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Morphology Among Different Scanner
Manufacturers in Alzheimer’s disease
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Background: Brain MRI scanner variability can introduce bias in measurements. Harmonizing scanner variability is crucial.
Purpose: To develop a harmonization method aimed at removing scanner variability, and to evaluate the consistency of
results in multicenter studies.
Study Type: Retrospective.
Population: Multicenter data from 170 healthy participants (males/females = 98/72; age = 73.8 � 7.3) and 170 Alzheimer’s
disease patients (males/females = 98/72; age = 76.2 � 8.5) were compared with reference data from another
340 participants.
Field Strength/Sequence: 3-T, magnetization prepared rapid gradient echo and turbo field echo; 1.5-T, inversion recovery
prepared fast spoiled gradient echo T1-weighted sequences.
Assessment: Gray matter (GM) brain images, obtained through segmentation of T1-weighted images, were utilized to
evaluate the performance of the harmonization method using common orthogonal basis extraction (HCOBE) and four
other methods (removal of artificial voxel effect by linear regression, RAVEL; Z_score; general linear model, GLM; Com-
Bat). Linear discriminant analysis (LDA) was used to access the effectiveness of different methods in reducing scanner vari-
ability. The performance of harmonization methods in preserving GM volumes heterogeneity was evaluated by the
similarity of the relationship between GM proportion and age in the reference and multicenter data. Furthermore, the con-
sistency of the harmonized multicenter data with the reference data were evaluated based on classification results (train/
test = 7/3) and brain atrophy.
Statistical Tests: Two-sample t-tests, area under the curve (AUC), and Dice coefficients were used to analyze the consis-
tency of results from the reference and harmonized multicenter data. A P-value <0.01 was considered statistically
significant.
Results: HCOBE reduced the scanner variability from 0.09 before harmonization to 0.003 (ideal: 0, RAVEL/Z_score/GLM/
ComBat = 0.087/0.003/0.006/0.013). GM volumes showed no significant difference (P = 0.52) between the reference and
HCOBE-harmonized multicenter data. Consistency evaluation showed that AUC values of 0.95 for both reference and
HCOBE-harmonized multicenter data (RAVEL/Z_score/GLM/ComBat = 0.86/0.86/0.84/0.89), and the Dice coefficient
increased from 0.73 before harmonization to 0.82 (ideal: 1, RAVEL/Z_score/GLM/ComBat = 0.39/0.64/0.59/0.74).
Data Conclusion: HCOBE may help to remove scanner variability and could improve the consistency of results in multicen-
ter studies.
Level of Evidence: 2
Technical Efficacy Stage: 1
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In brain research, MRI is widely used for the study of disor-
ders and development.1,2 Pooling MRI data from different

centers brings several advantages, such as increasing the sam-
ple size, increasing the representation of pathological diver-
sity, and promoting the development of robust and
generalizable models.3 However, it has been indicated that
differences in MRI scanner characteristics (e.g., manufacturer,
field strength, and software version) and variations in acquisi-
tion protocol parameters (e.g., echo time [TE], gradient ori-
entation, and voxel size) can result in nonbiological
measurement biases for voxel-based morphometry, regional
cortical thickness, and brain volume assessments.4–7 These
biases are collectively known as the “center effect,” which
describes the impact of the variability in scanner and acquisi-
tion protocol parameters.8,9 Neglecting harmonization of cen-
ter effects may lead to faulty and unreliable results, ultimately
affecting the consistency of the results.10,11 Therefore, it is
crucial to remove center effects when pooling MRI data from
multiple centers.

Several harmonization methods have been proposed to
address the issue of center effects.12–15 These methods can be
broadly categorized into two groups: histogram-based
methods and statistical covariate methods.10,16 The former
uses histograms to normalize MRI data from different centers,
providing the advantage of simplicity and ease of implementa-
tion.10 For instance, Fortin et al. proposed the removal of
artificial voxel effect by linear regression (RAVEL) method,
which utilizes cerebrospinal fluid (CSF) regions to correct
gray matter (GM) brain regions affected by both scanner and
disease characteristics.13 Furthermore, Wachinger et al. used
the Z-score normalization method to standardize MRI histo-
grams from different centers, thereby removing intercenter
differences.13,15 The latter category utilized covariates to
regress the effect of center on the data and could more accu-
rately remove center differences. For example, Kostro et al.
used a general linear model (GLM) to remove center differ-
ences by treating centers as covariates.14 Fortin et al. used the
ComBat method to harmonize fractional anisotropy in diffu-
sion tensor imaging and cortical thickness in T1-weighted
MRI data.12 However, these existing methods fail to distin-
guish between center effects and biological heterogeneity cau-
sed by factors such as age, sex, and pathology, by
indiscriminately removing both types of differences.17

These existing methods used the elimination of differ-
ences between images acquired at different centers as a refer-
ence standard to evaluate performance.12–15 However, a
harmonization method should ideally preserve biological het-
erogeneity (e.g., age- and pathology-related differences) while
removing center effects to be effective. Such an approach can
strengthen the consistency and reliability of research out-
comes by removing extraneous nonbiological variance in
downstream analyses.18 Yet, there is no harmonization
method available to address these requirements.

In this study, we aimed to develop a harmonization
method using common orthogonal basis extraction
(HCOBE). Furthermore, we used the single-center data as a
reference. We evaluated the performance of HCOBE and
four existing harmonization methods to correct the scanner
and acquisition parameters, and also evaluated the consistency
of the multicenter data harmonized by HCOBE and four
existing methods with the reference data.

Materials and Methods
This study obtained institutional review board (IRB) approval for
each dataset. Informed consent was waived by the IRB because this
study was a retrospective analysis of existing data.

Data Selection
This study utilized T1-weighted images from two public datasets:
OASIS (Open Access Series of Imaging Studies; https://www.
oasis-brains.org/#data) and ADNI (Alzheimer’s Disease Neuroim-
aging Initiative; https://adni.loni.usc.edu/data-samples/access-data/
).19,20 Inclusion criteria for healthy control (HC) participants
were as follows: age 18 years or older and absence of cognitive
impairment as indicated by a clinical dementia rating (CDR)
score of 0 and a mini-mental state examination (MMSE) score
≥27. Patients with Alzheimer’s disease (AD) were required to
meet NINCDS-ADRDA criteria and had to have cognitive scores
of CDR ≥ 0.5 and MMSE < 27. We removed individuals with a
history of neurological or psychiatric diseases, left-handed partici-
pants, pregnant or nursing women, and patients with implanted
medical devices like pacemakers and drug pumps.

Images acquired using the same scanner and acquisition proto-
col were grouped into a center. The reference center (reference
data = RD) was identified by choosing the center with the largest
subset of data in the OASIS dataset, which utilized Siemens 3 T
scanners for image acquisition. The subsets with the highest num-
bers of images from 3 T Philips and 1.5 T General Electric
(GE) scanners in the ADNI dataset (multicenter data-
Philips = MD-P; multicenter data-GE = MD-G) were selected as
the multicenter data to account for scanner differences (Fig. 1). Fol-
lowing selection, only T1-weighted images of 298 cognitively normal
(CN) participants and 271 patients with AD were retained for fur-
ther analysis after matching for age [50,97], gender, and handedness.
The receive coils of all scanners are 8-channel head coils. Table 1
lists the detailed acquisition parameters for all participants.

We created two categories for CN participants and AD
patients: HC and AD groups. Both HC and AD groups contained
data for four centers: RD, MD-P, MD-G, and multicenter data-
Siemens (MD-S). The RD data were designated as the reference
standard for evaluating the consistency of multicenter results. The
multicenter data consisted of the remaining data from the other
three centers. Furthermore, MD-S was a subset of RD and ensured
equal statistical power in the multicenter and reference data. After
inclusion of the MD-S, the multicenter data consisted of 170 CN
participants and 170 patients with AD. Similarly, the reference data
consisted of 170 CN participants and 170 patients. Demographic
information about all participants is provided in Table 2.
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Image Preprocessing
The T1-weighted images were initially segmented using the compu-
tational anatomy toolbox (CAT12; https://neuro-jena.github.io/cat/
), which entailed brain images normalization to montreal neurologi-
cal institute space with a voxel size of 1.5 � 1.5 � 1.5 mm and seg-
mented the normalized brain image into GM, white matter, and
CSF. Subsequently, all segmented GM images underwent smoothing
with an 8 � 8 � 8 mm full width at half maximum (FWHM)
Gaussian kernel to augment the signal-to-noise ratio. The
preprocessing pipeline is presented schematically on the left
of Fig. 2.

A Harmonization Method Using Common
Orthogonal Basis Extraction

COMMON ORTHOGONAL BASIS EXTRACTION (COBE)
METHOD. The COBE method was initially introduced in multi-
block data analysis to separate common and heterogeneity
spaces.21,22 In this study, we reformulated the COBE model for
application on the segmented GM T1-weighted images. Let H be a

set of matrices encompassing Y nϵRD�J n ,nϵM� �
,

M¼ 1,2,…,Nf g, where Y n represents the voxel matrix at center
n n¼ 1,2,…,Nð Þ and N is the total number of centers. The voxel
matrix factorization of Y n can be expressed as follows:

min
An,Bn

Y n�AnBT
n

�� ��2,nϵM ð1Þ

Let An ¼ A �An
� �

,nϵM and Bn ¼ B �Bn
� �

,nϵM, where A con-

tains the common feature shared by all voxel matrixes in M, and �An

contains heterogeneous information in each Y n. Furthermore, B and
�Bn are the coefficients of A and �An. This allowed us to factorize
voxel matrix in M in a linked way so that

Y n ≈AnBT
n ¼ A �An

� � B
T
n

�B
T
n

2
4

3
5¼AB

T
n þ �An�B

T
n ð2Þ

The common feature matrix A can be obtained using alternat-

ing least squares. Once A is estimated, Bn can be calculated by

Bn ¼ Y T
n � �Bn�A

T
n

� �
A A

T
A

� ��1
¼Y T

n A,nϵM ð3Þ

Since Y n contains common and heterogeneity information of

T1-weighted images, it is necessary to map Bn to have a common
distribution, as in Eq. 4

B
map
n ¼ std Bref

	 
Bn�mean Bn
	 


std Bn
	 
 þmean Bref

	 
 ð4Þ

where Bref is the B of reference center, and mean �ð Þ and std �ð Þ
denote the mean and standard deviation. Once B

map
n is estimated,

we can find the common space AB
map
n

T
and heterogeneity

space �An�B
T
n ¼Y n�AB

map
n

T
.

Furthermore, F cobe �ð Þ denotes the common feature extracted

by COBE, while F sitei
space �ð Þ denotes the heterogeneity space calculated

by the common feature.

FIGURE 1: Flowchart of data acquisition. Acquisition criteria for reference data and multicenter data. Symbol N represents the total
of CN participants and AD patients in this center. CDR = clinical dementia rating; MMSE = mini-mental state examination;
RD = reference data; MD-S = multicenter data-Siemens; MD-P = multicenter data-Philips; MD-G = multicenter data-GE;
ADNI = Alzheimer’s disease neuroimaging initiative; OASIS = open access series of imaging studies.
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HCOBE METHOD. We proposed a harmonization method using
COBE (HCOBE) to harmonize scanner and acquisition protocol
variability. Figure 2 illustrates the HCOBE framework for two cen-
ters (Y 1,Y 2). For harmonizing multicenter data using HCOBE, the
COBE method was initially employed to decompose intercenter
data. The decomposed heterogeneity space S interheter1 and S interheter2 can be
computed from the common biological feature as follows:

S interheter1 ¼F site1
space F cobe Y 1,Y 2ð Þð Þ

S interheter2 ¼F site2
space F cobe Y 1,Y 2ð Þð Þ

ð5Þ

Since center 1 and center 2 utilized different scanners and pro-
tocols, both biological heterogeneity space and center effects were
present in S interheter1 and S interheter2. To remove the center effects while pre-
serving biological heterogeneity, we separated the center effect and
biological heterogeneity further. We decomposed the intracenter
data using COBE. Specifically, participants at center 1 and center
2 were randomly divided into two groups. Heterogeneity space of

each center (S intraheter1,S
intra
heter2) was then extracted using the following

equation:

S intraheter1 ¼F site1
space F cobe Y 1ð Þð Þ

S intraheter2 ¼F site2
space F cobe Y 2ð Þð Þ

ð6Þ

Since intracenter data were acquired on the same scanner and
with the same acquisition protocol, the decomposed heterogeneity

space S intraheter1 and S intraheter2 only contained biological heterogeneity.
Finally, we accurately obtained the center effects (Z ) by calculating
the differences between intercenter and intracenter heterogeneity
space:

Z i ¼ S interheteri�S intraheteri ð7Þ

Once center effect Z i has been estimated, we can accurately
correct the data for center i:

Y HCOBE
i ¼Y i�Z i ð8Þ

During the process of harmonizing the multicenter data using
HCOBE, the data from the three centers were divided into two pairs
(MD-S and MD-P, MD-S and MD-G) and successively forwarded
to the HCOBE pipeline. In both harmonization processes, MD-S
was used as the reference center.

A MATLAB (software version matlab 2020a, the MathWorks,
Inc., Beijing, China) toolbox for this method is freely available at
https://github.com/zhaoslucas/MBIH.

EXISTING METHODS. In this work, we compared the proposed
HCOBE method with four existing methods: 1) RAVEL,13 2)
Z-score normalization (Z_score),15,23 3) GLM,14 and 4) Com-
Bat.12,24 We briefly introduce these competing methods as follows.

RAVEL is a method that harmonizes GM brain regions
affected by both scanner and disease using CSF regions that are pri-
marily affected by scanner differences.13

The Z-score normalization method is utilized to standardize
data across different centers, such that the histograms of the data
from each center follow the same distribution.15,23

The GLM uses the center as a covariate to determine the rela-
tionship between biological variables, such as age and sex and brain
image intensity. Center differences were removed by regressing the
effects of center.14

ComBat was initially used to harmonize batch effects in geno-
mics. The model assumes that centers have additive and

TABLE 2. Demographics of All Participant

Group Center N Age range Age Gender (M/F) Dataset Function

HC (CDR = 0,
MMSE ≥27)

RD 170 [50,95] 72.8 � 6.7 98/72 OASIS Reference data

– 170 [50,95] 73.8 � 7.3 98/72 OASIS + ADNI Total

MD-S 42 [50,95] 67.5 � 7.8 34/8 OASIS Multicenter data

MD-P 47 [58,90] 74.4 � 7.0 22/25 ADNI

MD-G 81 [70,90] 76.7 � 4.7 42/39 ADNI

AD (CDR ≥ 0.5,
MMSE <27)

RD 170 [50,97] 76.6 � 8.2 98/72 OASIS Reference data

– 170 [55,97] 76.2 � 8.5 98/72 OASIS + ADNI Total

MD-S 69 [62,97] 78.2 � 8.3 49/20 OASIS Multicenter data

MD-P 36 [56,91] 73.1 � 8.8 13/23 ADNI

MD-G 65 [55,89] 75.7 � 8.1 36/29 ADNI

–Unless otherwise indicated, data are from a single-center.
CDR = clinical dementia rating; MMSE = mini-mental state examination; RD = reference data; MD-S = multicenter data-Siemens;
MD-P = multicenter data-Philips; MD-G = multicenter data-GE; HC = healthy control; AD = Alzheimer’s disease;
ADNI = Alzheimer’s disease neuroimaging initiative; OASIS = open access series of imaging studies.
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multiplicative effects on the data. The parameters associated with the
center were estimated using Empirical Bayes. The final ComBat-
harmonized voxel intensity is calculated by subtracting the center
effects from the original image.12,24

Evaluation of Harmonization Methods

PERFORMANCE EVALUATION TO REMOVE THE CENTER
EFFECTS. The disease can influence the heterogeneity in brain
structure and morphology of AD patients.25 In contrast, multicenter
CN participants, who do not have brain disease, show heterogeneity
in brain structure and morphology primarily influenced by center
effects. Therefore, we mainly assessed the performance of harmoniza-
tion methods in the HC group. Here, we used linear discriminant
analysis (LDA) to reduce the dimensionality of the multicenter data
before and after harmonization. The primary objective of LDA was
to identify a projection direction that maximized the distinction
between participants with data from different centers, while mini-
mizing the distance between sample points from the same center.
The average voxel intensity of 90 GM brain regions defined by the
Automated Anatomical Labeling (AAL) template in multicenter data
were projected into two coordinates.26 The center effect was repre-
sented by the difference in the coordinate distribution of the three
centers. To further quantitatively analyze the performance of differ-
ent harmonization methods in removing center effects, we intro-
duced the objective function J of LDA. The objective function J is
defined as

J ¼ wT Sbw
wT Sww

ð9Þ

where w represents the projection direction vector solved by LDA,
Sb is the between-class scatter matrix measuring the distance between
individual center data means, and Sw is the within-class scatter matrix
measuring the distance between each participant’s data and its cen-
tral mean. When the center effect is removed, the mean values of
each central data are identical, resulting in the objective function
J being 0. Hence, the closer the value of the objective function J is
to 0, the more effectively the center effect has been removed.

PERFORMANCE EVALUATION TO PRESERVE
BIOLOGICAL HETEROGENEITY. To achieve successful harmo-
nization, it is necessary to preserve biological heterogeneity while
removing center effects. As a measure for the latter, we used the
observation that GM volume was lower with age.27 The GM volume
was obtained by multiplying the CAT12-calculated modulation fac-
tor with the sum of voxels. To standardize the GM volume, we used
the GM proportion that measures GM in relation to the whole
brain. We fitted linear regression lines for GM proportion and age
for reference and multicenter data separately. We refer to the regres-
sion coefficient as the “atrophy rate.” The disparity between the har-
monization line and the reference line demonstrated changes in GM
volume after harmonization. The closer the harmonization line to
the reference line, the better the preservation of biological heteroge-
neity in the harmonized multicenter data.

Consistency Evaluation of the Results of
Harmonized Multicenter Data

CONSISTENCY EVALUATION OF CLASSIFICATION
RESULTS. Differences in brain structure and morphology have

FIGURE 2: The pipeline of preprocessing and HCOBE. The left of the red dotted line is the preprocessing pipeline. The right of the
red dotted line is the straightforward generalization of HCOBE. HCOBE = harmonization method using common orthogonal basis
extraction.
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been observed between CN and AD participants, and these findings
may impact the accuracy of clinical diagnosis for AD disease.28 To
determine the impact of center effects and biological heterogeneity
on the consistency of multicenter study results, we utilized a support
vector machine (SVM) model with a radial basis function kernel to
compare HCOBE and four existing methods before and after har-
monization for CN and AD classification. We tested three variants,
which were: only intracenter data (HC: HD-G; AD: HD-G), only
intercenter data (HC: HD-P; AD: HD-G), and both (HC: multi-
center data; AD: multicenter data). The model input included age,
sex, and the mean GM volume of 90 brain regions in the AAL tem-
plate. Our model training used a 70/30 data split, with 70% used
for the training set and 30% for testing. The model was assessed in
the training set using 3-fold cross-validation. We used the classifica-
tion outcomes of CN and AD in the single-center reference data as a
standard for assessment. The similarity between the harmonized clas-
sification outcomes and the reference standard was evaluated to
determine the consistency of the multicenter study.

CONSISTENCY EVALUATION OF BRAIN ATROPHY
RESULTS. A major pathological feature of AD is the atrophy of
brain tissues.27 Since the multicenter data matched the single-center
reference data for age and sex, the brain atrophy of multicenter data

should be consistent with that of the reference data. The Dice coeffi-
cient was used to evaluate the consistency of brain atrophy from the
multicenter data and the reference data. Dice coefficient is given by
van Rijsbergen29:

Dicei ¼ Vol V reference
T
V ið Þ

Vol V referenceð ÞþVol V ið Þð Þ=2 ð10Þ

where Vol *ð Þ indicates the count of voxel values that satisfies the
condition of being equal to 1 in the mask; V reference is a mask of
brain atrophy in the reference center, and V i is the mask of brain
atrophy in the multicenter data after harmonization using method i.
The ideal measure of Dice coefficient is equivalent to 1, which indi-
cates a complete overlap between the two outcomes.

Statistical Analysis
MATLAB 2020a (the MathWorks, Inc., Beijing, China) was used
for statistical analysis. To evaluate the impact of preserving biological
heterogeneity following the harmonization of data in the HC group
using different methods, we performed a two-sample t-test on the
reference data and the multicenter data before and after harmoniza-
tion, specifically examining the GM proportion.

FIGURE 3: Bivariate scatter plots of multicenter data (MD-S, MD-P, and MD-G) for HC group before and after harmonization, colored
by center. The smaller the optimal value of the LDA objective function J, the cleaner the removal of the center effect. MD-
S = multicenter data-Siemens; MD-P = multicenter data-Philips; MD-G = multicenter data-GE; RAVEL = removal of artificial voxel
effect by linear regression; GLM = general linear model; HCOBE = harmonization method using common orthogonal basis
extraction.
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The classification results were evaluated for accuracy, preci-
sion, recall, F1 score, receiver operating characteristics (ROC), and
area under the curve (AUC) based on the test set.

Brain atrophy can be assessed by performing a two-sample t-
test on the T1-weighted images of AD and CN. This procedure
included age, sex, and total intracranial volume (TIV) as covariates.
To control the false discovery rate, we implemented the Benjamini-
Hochberg procedure, with a significance threshold set at P < 0.01.

Results
Performance Evaluation to Remove the Center
Effects
Figure 3 displays bivariate scatter plots before and after har-
monization for HC multicenter data, with the differences in
the coordinate distribution of the three centers represented as
the center effect in each panel. The T1-weighted MRI data
before and after harmonization were shown in Fig. 4. These

results indicated that all the harmonization methods were
effective in reducing the center effects to varying degrees.
Among these methods, HCOBE, GLM, and Z_score mini-
mized the center effects, while RAVEL did not appear to be
as effective. Our results further indicated that HCOBE
(J = 0.003), GLM (J = 0.006), and Z_score (J = 0.003)
provided robust performance in removing the center effects.

Performance Evaluation to Preserve Biological
Heterogeneity
In Fig. 5, we noted that RAVEL showed an atrophy rate (r)
of r = �0.0028, indicating accelerated atrophy, while
Z_score showed an atrophy rate of r = �0.0012, indicating
reduced atrophy. However, HCOBE (�0.0019), ComBat
(�0.0020), and GLM (�0.0018) demonstrated atrophy rates
similar to that of the reference atrophy rate (�0.0019). The
distance between the harmonization line and the reference

FIGURE 4: T1-weighted MRI before and after harmonization. HC = healthy control; AD = Alzheimer’s disease; RAVEL = removal of
artificial voxel effect by linear regression; GLM = general linear model; HCOBE = harmonization method using common orthogonal
basis extraction.
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line indicated the changes in GM volume after harmoniza-
tion. We noticed that the GLM-harmonized multicenter data
resulted in the largest change in GM volume, while the

ComBat method preserved the variability of age better. The
HCOBE method performed remarkably well in preserving
age variability individually at each center.

FIGURE 5: The relationship between the proportion of GM and age in HC. For each harmonization method, we plot the relationship
between the proportion of GM and age after harmonization. The reference data (RD) and its fitted line (reference line) were
regarded as the reference standard. P values represented the results of two-sample t-test for the proportion of GM in the reference
data and multicenter data. There was no significant difference in age between the multicenter and reference data (P = 0.062).
RD = reference data; MD-S = multicenter data-Siemens; MD-P = multicenter data-Philips; MD-G = multicenter data-GE;
RAVEL = removal of artificial voxel effect by linear regression; GLM = general linear model; HCOBE = harmonization method using
common orthogonal basis extraction.
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In addition, the result of the two-sample t-test on the
HC reference data and the multicenter data showed that only
the HCOBE-harmonized multicenter data demonstrated sim-
ilarity to the reference data with a P-value of 0.52. However,
the multicenter data harmonized by the other four methods
differed significantly from the reference data.

Consistency Evaluation of Classification Results
Table 3 shows the classification results of the SVM model
for AD and CN based on 3-fold cross-validation. The results
showed that the maximum values for accuracy, precision,
recall, and AUC were obtained for the classification in raw
intercenter data. Furthermore, the classification outcomes
for CN and AD in the raw intracenter data were inferior to
the results obtained intercenter. In three variations, the clas-
sification results of the HCOBE-harmonized multicenter
data were comparable to those of the reference data.
Figure 6 visualizes the ROC curves and AUC values of the
SVM model for classifying AD and CN under 3-fold cross-

validation. The results showed that the SVM model had
similar ROC curves and AUC values on the HCOBE-
harmonized multicenter data and the single-center reference
data. However, the classification results of the multicenter
data harmonized by the other harmonization methods were
not as good as the intracenter and intercenter classification
results.

Consistency Evaluation of Brain Atrophy Results
Figure 7a shows the results of the two-sample t-test before
and after harmonization for the multicenter data.
Figure 7b shows the result of the two-sample t-test in the
single-center reference data, indicating the regions of brain
atrophy in AD patients. Both the reference data and the
multicenter data had the same statistical power. Hence, the
two-sample t-test results of the harmonized multicenter
data should be consistent with the two-sample t-test results
of the reference data. It was noted that the harmonized
results of existing methods had less brain atrophy in the

TABLE 3. Classification Performance of SVM Models on Multicenter Data and Reference Data

Methods Range Accuracy Precision Recall F1 score AUC

Raw Intra 0.837 0.875 0.737 0.800 0.910

Inter 0.909 0.944 0.895 0.919 0.977

Intra + Inter 0.775 0.833 0.686 0.753 0.830

RAVEL Intra 0.721 0.667 0.737 0.700 0.884

Inter 0.788 0.875 0.737 0.800 0.910

Intra + Inter 0.794 0.813 0.765 0.788 0.861

Z_score Intra 0.767 0.846 0.579 0.688 0.868

Inter 0.788 0.800 0.842 0.821 0.876

Intra + Inter 0.794 0.800 0.784 0.792 0.856

GLM Intra 0.791 0.750 0.790 0.769 0.855

Inter 0.818 0.810 0.895 0.850 0.865

Intra + Inter 0.716 0.824 0.549 0.659 0.837

ComBat Intra 0.837 0.833 0.790 0.811 0.893

Inter 0.818 0.810 0.895 0.850 0.910

Intra + Inter 0.794 0.768 0.843 0.804 0.894

HCOBE Intra 0.837 0.773 0.895 0.829 0.947

Inter 0.849 0.850 0.895 0.872 0.944

Intra + Inter 0.892 0.833 0.980 0.901 0.954

Reference Intra 0.873 0.896 0.843 0.869 0.942

RAVEL = removal of artificial voxel effect by linear regression; GLM = general linear model; HCOBE = harmonization method using
common orthogonal basis extraction; AUC = area under the curve.

10

Journal of Magnetic Resonance Imaging

 15222586, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jm

ri.28887 by U
niversity O

f C
alifornia, W

iley O
nline L

ibrary on [01/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



frontal lobe. However, the results of HCOBE-harmonized
multicenter data were more consistent with the reference
data for brain atrophy.

In Fig. 7c, we present the number of voxels with signifi-
cant differences for the reference data and the multicenter
data. The figure shows that the HCOBE harmonization

FIGURE 6: ROC curves and their associated AUC values for the SVM model. T-fold cross validation was used to test the classification
of CN and AD before and after harmonization for the SVM model. The intra-center classification was between CN and AD in HD-G,
the intercenter classification was between CN in HD-P and AD in HD-G, and the classification of both was between CN and AD for
multicenter data. AUC = Area under the curve; RAVEL = removal of artificial voxel effect by linear regression; GLM = general linear
model; HCOBE = harmonization method using common orthogonal basis extraction.
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approach exhibited superior performance as compared to the
other methods used in this study. The number of voxels gen-
erated by HCOBE (310,609) was found to be closest to the
reference dataset (382,936 voxels). In Fig. 7d, we show
the quantitative results of the Dice coefficients. The HCOBE
method had the highest Dice coefficient value (Dice = 0.82).
These results demonstrated that HCOBE significantly
improved the consistency of results in multicenter studies.

Discussion
In this study, we proposed the HCOBE methodology to har-
monize multicenter data. Our evaluation of available

harmonization methods revealed that HCOBE outperforms
other methods by removing center effects while preserving
biological heterogeneity. In addition, we classified AD and
CN in three variations and analyzed the brain atrophy regions
in patients with AD. By comparing the similarity of the
resulting harmonized multicenter data with the single-center
reference data, we found that HCOBE may significantly
improve the consistency of results in multicenter studies.

The RAVEL method has been found to perform poorly
in removing center effects and preserving biological heteroge-
neity, which was not unexpected since the method relies on
the control region.13 Specifically, using CSF intensities as the

FIGURE 7: Two-sample t-tests of AD and CN on the reference data and the multicenter data. (a) The two-sample t-tests results of
170 AD and 170 CN in the multicenter data (MD-S, MD-P, and MD-G) before and after correction. (b) The two-sample t-tests results
of 170 AD and 170 CN in the reference data (RD). The arrows pointed to the frontal lobe. (c) The number of significant voxels in the
reference data and multicenter data. (d) The Dice coefficient of the harmonized data. RAVEL = removal of artificial voxel effect by
linear regression; GLM = general linear model; HCOBE = harmonization method using common orthogonal basis extraction.
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surrogate for center instead of GM intensities resulted in poor
RAVEL performance. The Z_score and GLM methods were
similarly unsuccessful at preserving biological heterogeneity
after the center effects was removed, which may explain why
they mistakenly removed biological heterogeneity as the cen-
ter effects. In addition, HCOBE was compared with Com-
Bat. Although ComBat effectively preserved biological
heterogeneity, it was less successful at removing the center
effects due to its assumption that all voxels share the same
common distribution, thereby rendering it incapable of accu-
rately determining model parameters for voxels with different
distributions.16

The results of the consistency assessment showed a
superior classification performance of the raw data between
centers. This can be attributed to the inclusion of center
effects in addition to biological heterogeneity in the differ-
ences observed for CN and AD between centers. Further-
more, the classification results of the multicenter raw data
showed inferior performance compared to the intracenter
data. This observation suggests that center effects have an
impact on the biological heterogeneity of CN and
AD. ComBat exhibited the highest AUC value and Dice coef-
ficient compared to the other available harmonization
methods. In contrast to RAVEL, GLM, and Z_score, Com-
Bat significantly improved the consistency of results in multi-
center studies. Similar findings were observed in the
HCOBE-harmonized multicenter data and single-center ref-
erence data when using the identical analytical method. The
HCOBE-harmonized multicenter data displayed higher con-
sistency when contrasted with the raw multicenter data and
the data that underwent harmonization using existing
methods. This reflected that HCOBE accurately separated
the center effects from biological heterogeneity and preserved
the biological heterogeneity while removing the center effects.

Multicenter studies have become more common,
highlighting the issue of scanner variability on experimental
results.30–32 In the particular context of T1-weighted images,
we have demonstrated the strong performance of HCOBE.
However, the HCOBE methodology is versatile and can be
applied beyond the T1-weighted images. Studies have shown
that software updates can affect the consistency of longitudi-
nal data.33,34 Furthermore, HCOBE can also be used to har-
monize MRI scans over multiple time points, including
functional MRI and longitudinal structural MRI of the same
patient. In addition, the HCOBE method can be applied to
measurements at the region of interest (ROI) level and radi-
omics.8 The performance of the HCOBE method is not
affected by dataset size or image category, and it holds great
promise as a harmonization method for multicenter studies.

Limitations
One limitation of this study is that participant heterogeneity
was present despite the lack of significant differences in age,

sex, and handedness between the multicenter and single-
center groups. As such, achieving agreement between the
results from multicenter and single-center was challenging. In
addition, this study focused on CN participants and AD
patients, and further validation of the effect of HCOBE on
other populations or diseases is needed. Additionally, the
MRI data were acquired using older model scanners such as
Tim Trio, Achieva, and Signa Excite, and the performance of
HCOBE on the new model needs further investigation.

Conclusion
The HCOBE method may facilitate the aggregation of brain
images acquired from multiple centers. The HCOBE method
could improve the consistency of results with multicenter
studies after removing the center effects.

Acknowledgments
Data were provided in part by OASIS-3 Principal Investiga-
tors: T. Benzinger, D. Marcus, J. Morris. Data were provided
in part by the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). As such, the investiga-
tors within the ADNI contributed to the design and imple-
mentation of ADNI and/or provided data but did not
participate in analysis or writing of this report. A complete
listing of ADNI investigators can be found at: https://adni.
loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf

REFERENCES
1. Kaufmann T, van der Meer D, Doan NT, et al. Common brain disorders

are associated with heritable patterns of apparent aging of the brain.
Nat Neurosci 2019;22:1617-1623.

2. Machado-Rivas F, Gandhi J, Choi JJ, et al. Normal growth, sexual
dimorphism, and lateral asymmetries at fetal brain MRI. Radiology
2022;303:162-170.

3. Parekh P, Bhalerao GV, John JP, Venkatasubramanian G, consortium A.
Sample size requirement for achieving multisite harmonization using
structural brain MRI features. Neuroimage 2022;264:119768.

4. Orlhac F, Frouin F, Nioche C, Ayache N, Buvat I. Validation of a
method to compensate multicenter effects affecting CT radiomics.
Radiology 2019;291:52-58.

5. Takao H, Hayashi N, Ohtomo K. Effect of scanner in longitudinal stud-
ies of brain volume changes. J Magn Reson Imaging 2011;34:438-444.

6. Takao H, Hayashi N, Ohtomo K. Effects of study design in multi-
scanner voxel-based morphometry studies. Neuroimage 2014;84:
133-140.

7. Tax CMW, Grussu F, Kaden E, et al. Cross-scanner and cross-protocol
diffusion MRI data harmonisation: A benchmark database and evalua-
tion of algorithms. Neuroimage 2019;195:285-299.

8. Orlhac F, Lecler A, Savatovski J, et al. How can we combat multicenter
variability in MR radiomics? Validation of a correction procedure. Eur
Radiol 2021;31:2272-2280.

9. Pagani E, Storelli L, Pantano P, et al. Multicenter data harmonization for
regional brain atrophy and application in multiple sclerosis. J Neurol
2023;270:446-459.

13

Zhao et al.: Multicenter MRI Harmonization

 15222586, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jm

ri.28887 by U
niversity O

f C
alifornia, W

iley O
nline L

ibrary on [01/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://adni.loni.usc.edu
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


10. Tong QQ, Gong T, He HJ, et al. A deep learning-based method for
improving reliability of multicenter diffusion kurtosis imaging with var-
ied acquisition protocols. Magn Reson Imaging 2020;73:31-44.

11. Wengler K, Cassidy C, van der Pluijm M, et al. Cross-scanner harmoni-
zation of neuromelanin-sensitive MRI for multisite studies. J Magn
Reson Imaging 2021;54:1189-1199.

12. Fortin JP, Cullen N, Sheline YI, et al. Harmonization of cortical thickness
measurements across scanners and sites. Neuroimage 2018;167:
104-120.

13. Fortin JP, Sweeney EM, Muschelli J, Crainiceanu CM, Shinohara RT,
Alzheimer DN. Removing inter-subject technical variability in magnetic
resonance imaging studies. Neuroimage 2016;132:198-212.

14. Kostro D, Abdulkadir A, Durr A, et al. Correction of inter-scanner and
within-subject variance in structural MRI based automated diagnosing.
Neuroimage 2014;98:405-415.

15. Wachinger C, Rieckmann A, Polsterl S, Alzheimer’s Disease Neuroimag-
ing Initiative and the Australian Imaging Biomarkers and Lifestyle flag-
ship study of ageing. Detect and correct bias in multi-site
neuroimaging datasets. Med Image Anal 2021;67:101879.

16. Zhong J, Wang Y, Li J, et al. Inter-site harmonization based on dual
generative adversarial networks for diffusion tensor imaging: Applica-
tion to neonatal white matter development. Biomed Eng Online 2020;
19:4.

17. Maikusa N, Zhu YH, Uematsu A, et al. Comparison of traveling-subject
and ComBat harmonization methods for assessing structural brain char-
acteristics. Hum Brain Mapp 2021;42:5278-5287.

18. Zuo XN, Xu T, Milham MP. Harnessing reliability for neuroscience
research. Nat Hum Behav 2019;3:768-771.

19. Jack CR, Bernstein MA, Fox NC, et al. The Alzheimer’s disease Neuro-
imaging initiative (ADNI): MRI methods. J Magn Reson Imaging 2008;
27:685-691.

20. Lamontagne PJ, Benzinger TL, Morris JC, Keefe S, Marcus D. OASIS-3:
Longitudinal Neuroimaging, clinical, and cognitive dataset for Normal
aging and Alzheimer disease. MedRxiv 2019.

21. Zhou GX, Cichocki A, Zhang Y, Mandic DP. Group component analysis
for multiblock data: Common and individual feature extraction. IEEE
Transactions on Neural Networks and Learning Systems 2016;27:2426-
2439.

22. Zhou GX, Zhao QB, Zhang Y, Adali T, Xie SL, Cichocki A. Linked com-
ponent analysis from matrices to high-order tensors: Applications to
biomedical data. Proc IEEE 2016;104:310-331.

23. Yan CG, Craddock RC, Zuo XN, Zang YF, Milham MP. Standardizing
the intrinsic brain: Towards robust measurement of inter-individual vari-
ation in 1000 functional connectomes. Neuroimage 2013;80:246-262.

24. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray
expression data using empirical Bayes methods. Biostatistics 2007;8:
118-127.

25. Raji CA, Lopez OL, Kuller LH, Carmichael OT, Becker JT. Age,
Alzheimer disease, and brain structure. Neurology 2009;73:1899-1905.

26. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated
anatomical labeling of activations in SPM using a macroscopic anatomi-
cal parcellation of the MNI MRI single-subject brain. Neuroimage 2002;
15:273-289.

27. Pini L, Pievani M, Bocchetta M, et al. Brain atrophy in Alzheimer’s dis-
ease and aging. Ageing Res Rev 2016;30:25-48.

28. Niemeyer F, Galbusera F, Tao YP, Kienle A, Beer M, Wilke HJ. A deep
learning model for the accurate and reliable classification of disc
degeneration based on MRI data. Invest Radiol 2021;56:78-85.

29. Fahmy AS, Neisius U, Chan RH, et al. Three-dimensional deep con-
volutional neural networks for automated myocardial scar quantification
in hypertrophic cardiomyopathy: A multicenter multivendor study.
Radiology 2020;294:52-60.

30. Bashyam VM, Doshi J, Erus G, et al. Deep generative medical image
harmonization for improving cross-site generalization in deep learning
predictors. J Magn Reson Imaging 2022;55:908-916.

31. Schwartz DL, Tagge I, Powers K, et al. Multisite reliability and repeat-
ability of an advanced brain MRI protocol. J Magn Reson Imaging
2019;50:878-888.

32. Tong QQ, He HJ, Gong T, et al. Reproducibility of multi-shell diffusion
tractography on traveling subjects: A multicenter study prospective.
Magn Reson Imaging 2019;59:1-9.

33. Jovicich J, Marizzoni M, Bosch B, et al. Multisite longitudinal reliability
of tract-based spatial statistics in diffusion tensor imaging of healthy
elderly subjects. Neuroimage 2014;101:390-403.

34. Takao H, Hayashi N, Kabasawa H, Ohtomo K. Effect of scanner in lon-
gitudinal diffusion tensor imaging studies. Hum Brain Mapp 2012;33:
466-477.

14

Journal of Magnetic Resonance Imaging

 15222586, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jm

ri.28887 by U
niversity O

f C
alifornia, W

iley O
nline L

ibrary on [01/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


	 Harmonizing T1-Weighted Images to Improve Consistency of Brain Morphology Among Different Scanner Manufacturers in Alzheim...
	Materials and Methods
	Data Selection
	Image Preprocessing
	A Harmonization Method Using Common Orthogonal Basis Extraction
	COMMON ORTHOGONAL BASIS EXTRACTION (COBE) METHOD
	HCOBE METHOD
	EXISTING METHODS

	Evaluation of Harmonization Methods
	PERFORMANCE EVALUATION TO REMOVE THE CENTER EFFECTS
	PERFORMANCE EVALUATION TO PRESERVE BIOLOGICAL HETEROGENEITY

	Consistency Evaluation of the Results of Harmonized Multicenter Data
	CONSISTENCY EVALUATION OF CLASSIFICATION RESULTS
	CONSISTENCY EVALUATION OF BRAIN ATROPHY RESULTS

	Statistical Analysis

	Results
	Performance Evaluation to Remove the Center Effects
	Performance Evaluation to Preserve Biological Heterogeneity
	Consistency Evaluation of Classification Results
	Consistency Evaluation of Brain Atrophy Results

	Discussion
	Limitations

	Conclusion
	Acknowledgments
	REFERENCES


